Jumat, 18 November 2011


Cara Cepat Menyelesaikan Sistem Persamaan Linier Dengan Dua Peubah
(oleh : Jhon Abdi,S.Pd. Guru SMAN 1 Lhokseumawe Aceh; http://jhonabdi.worpress.com)
Ambil persamaan dua peubah berikut:
ax + by = p ---------(1)
cx + dy = q ---------(2) 
Nilai x dapat ditentukan dengan x = ( bq - pd)/(bc - ad), untuk nilai y subtitusikan nilai x kepersaan (1) atau (2)
contoh :
Diketahui Sistem Persamaan Linier Dua Peubah berikut:
2x + 3y = 8 ---------(1)
3x + 2y = 7 ---------(2), tentukan nilai x dan y.
Jawab :
x = ( bq - pd)/(bc - ad)
x = (3.7 - 8.2)/(3.3 - 2.2)
x = (21 - 16)/(9 -4)
x = 5/5
x = 1, untuk menemukan nilai y subtitusikan x = 1 ke (1)
sehingga diperoleh:  2.1 + 3y = 8 2 + 3y = 8  3y = 6  y = 2
jadi nilai x = 1 dan nilai y = 2.
semoga cara ini dapat membantu siswa yang mengalami masalah dalam menyelesaikan SPLDV, bagi teman-teman dapat mengembangkan ke SPLTV dan seterusnya, Terimakasih.



Pada semester 1 kelas 8 SMP dibahas materi sistem persamaan linear dua variabel (SPLDV). Ada beberapa cara untuk menyelesaikan SPLDV, diantara metode eliminasi, substitusi, reduksi, dan grafik. Keempat cara tersebut memerlukan penyelesaian yang cukup panjang.

Kali ini saya akan memberikan trik dalam menyelesaikan soal SPLDV.

Contoh:
 
Carilah penyelesaian dari sistem persamaan 3x
 – 2y = 7 dan 2x + y = 14!
Triknya adalah sebagai berikut:




Misalnya:
 
persamaan 1 adalah
 A1x + B1y = C1 
persamaan 2 adalah
 A2x + B2y = C2
maka:
 

Trik Penyelesaian SPLDV 
Untuk mencari nilai
 y kita substitusi nilai x yang telah didapat ke persamaan 1 atau persamaan 2.
Dari soal:
 
3x
 – 2y = 7 
2x
 + y = 14

Maka: 
 
Trik Penyelesaian SPLDV 
Selanjutnya substitusi
 x=5 ke persamaan 1 atau persamaan 2. Misal kita substitusi ke persamaan 2.
2x + y
= 14
2(5) + y
= 14
y
=14 – 10
y
= 4
Jadi, penyelesaian dari sistem persamaan 3x – 2y = 7 dan 2x + y = 14 adalah x=5 dany=4.
Bandingkan dengan penyelesaian menggunakan metoda eliminasi, reduksi, substitusi, atau grafik. Apakah menggunakan trik di atas lebih cepat atau sama saja? Terserah Anda mau menggunakan yang mana.








Pengertian SPLDV

Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.

1. Persamaan Linear Satu Variabel

Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.
http://www.crayonpedia.org/wiki/images/2/24/Persamaan_3.jpg
Bentuk-bentuk persamaan tersebut memiliki satu variabel yang belum diketahui nilainya. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.1 secara seksama.
http://www.crayonpedia.org/wiki/images/a/a3/Persamaan_4.jpg



Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.
Image:persamaan_5.jpg
Jadi, diperoleh nilai x = 4 dan himpunan penyelesaian, Hp = {4}. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.2 berikut.
http://www.crayonpedia.org/wiki/images/d/d0/Persamaan_6.jpg

http://www.crayonpedia.org/wiki/images/3/35/Persamaan_7.jpg


2. Persamaan Linear Dua Variabel

Kamu telah mempelajari dan memahami persamaan linear satu variabel. Materi tersebut akan membantu kamu untuk memahami persamaan linear dua variabel. Coba kamu perhatikan bentuk-bentuk persamaaan berikut.
http://www.crayonpedia.org/wiki/images/5/5e/Persamaan_8.jpg
Persamaan-persamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.3 berikut.
Image:persamaan_9.jpg
Image:persamaan_10.jpg
Image:persamaan_11.jpg
Image:persamaan_12.jpg

3. Sistem Persamaan Linear Dua Variabel

Coba kamu perhatikan bentuk-bentuk persamaan linear dua variabel berikut.
http://www.crayonpedia.org/wiki/images/5/58/Persamaan_13.jpg
Dari uraian tersebut terlihat bahwa masing-masing memiliki dua buah persamaan linear dua variabel. Bentuk inilah yang dimaksud dengan Sistem Persamaan Linear Dua Variabel (SPLDV). Berbeda dengan persamaan dua variabel, SPLDV memiliki penyelesaian atau himpunan penyelesaian yang harus memenuhi kedua persamaan linear dua variabel tersebut. Contoh, perhatikan sistem SPLDV berikut.
Image:persamaan_14.jpg
Penyelesaian dari sistem persamaan linear adalah mencari nilai-nilai x dan y yang dic ari demikian sehingga memenuhi kedua persamaan linear. Perhatikan Tabel 4.1 berikut ini.
http://www.crayonpedia.org/wiki/images/4/40/Persamaan_15.jpg
Tabel 4.1 menjelaskan bahwa persamaan linear 2x + y = 6 memiliki 4 buah penyelesaian. Adapun persamaan linear x + y = 5 memiliki 6 buah penyelesaian. Manakah yang merupakan penyelesaian dari 2 x + y = 6 dan x + y = 5? Penyelesaian adalah nilai x dan y yang memenuhi kedua persamaan linear tersebut. Perhatikan dari Tabel 4. 1 nilai x = 1 dan y = 4 sama-sama
memenuhi penyelesaian dari kedua persamaan linear tersebut. Jadi, dapat dituliskan:
Image:persamaan_16.jpg
Image:persamaan_17.jpg
Image:persamaan_18.jpg

B. Penyelesaian SPLDV

Seperti yang telah dipelajari sebelumnya, SPLDV adalah persamaan yang memiliki dua buah persamaan linear dua variabel. Penyelesaian SPLDV dapat ditentukan dengan cara mencari nilai variabel yang memenuhi kedua persamaan linear dua variabel tersebut. Pada subbab sebelumnya, kamu telah mempelajari bagaimana cara menentukan penyelesaian suatu SPLDV dengan menggunakan tabel, namun cara seperti itu membutuhkan waktu yang cukup lama. Untuk itu, ada beberapa
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:
1. Metode Grafik
2. Metode Substitusi
3. Metode Eliminasi
Pelajarilah uraian mengenai metode-metode tersebut pada bagian berikut ini.

1. Metode Grafik

Grafik untuk persamaan linear dua variabel berbentuk garis lurus. Bagaimana dengan SPLDV? Ingat, SPLDV terdiri atas dua buah persamaan dua variabel, berarti SPLDV digambarkan berupa dua buah garis lurus. Penyelesaian dapat ditentukan dengan menentukan titik potong kedua garis lurus tersebut. Untuk lebih jelasnya, coba perhatikan dan pelajari Contoh Soal 4.6 dan Contoh Soal 4.7
Image:persamaan_19.jpg
Image:persamaan_20.jpg
Image:persamaan_21.jpg

2. Metode Substitusi

Penyelesaian SPLDV menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian SPLDV dengan menggunakan metode substitusi dapat kamu pelajari dalam Contoh Soal 4.8 dan Contoh Soal 4.9
Image:persamaan_22.jpg
Image:persamaan_23.jpg

3. Metode Eliminasi

Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.10 dan Contoh Soal 4.11
Image:persamaan_24.jpg
Image:persamaan_25.jpg

C. Penerapan SPLDV

Dalam kehidupan sehari-hari, banyak sekali permasalahan-permasalahan yang dapat dipecahkan menggunakan SPLDV. Pada umumnya, permasalahan tersebut berkaitan dengan masalah aritmetika sosial. Misalnya, menentukan harga satuan barang, menentukan panjang atau lebar sebidang tanah, dan lain sebagainya. Agar kamu lebih memahami, perhatikan dan pelajari
contoh-contoh soal berikut.
Image:persamaan_26.jpg
Image:persamaan_27.jpg
Image:persamaan_28.jpg











Image:persamaan_29.jpg
| b5e x hh Im











Image:persamaan_29.jpg

Tidak ada komentar:

Poskan Komentar